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Abstract

Orthogonal functions, and in particular. Walsh functions, have
been advocated in the literature as a method of approximating the
solutions of singular systems Ex' = Fx + Bu of index k. This paper
gives the first analysis of the accuracy of these approximations. For
Walsh functions. diverzen:e is shown for k > 3 and convergence for
k = 0, 1. The index two is also analyzed.
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1 Introduction

The singular control system

Ez'(t) = Fx(t) + Bu(t), x(to) = (1)

with E, F, B constant matrices and E singular, has been extensively studied
[2],[3],[8]. In [11] it was suggested that (1) could be solved using orthogonal
functions. This was discussed further in [4],[10],[9]. These papers con-
sidered Walsh functions because of their simple structure and the ease of
approximating coefficients. While these papers showed that one could solve
the resulting algebraic equations for the coefficients of an approximation,
none of them actually examined how good these approximations were. In
this paper we shall give the first discussion of the convergence of the Walsh
approximations for singular systems. It will be shown that in many cases
the approximations actually diverge from the true solutions as more terms
are used in the approximation.

2 Orthogonal Approximations

Suppose that E, F are n x n and that (1) is solvable. That is, AE + F is
a regular pencil so that det(AE + F) # 0 and (1) has a solution for every
sufficiently smooth u and for consistent xo [2]. We consider real E, F, B, z, u
but the complex case is similar.

To simplify notation,. In order to explain our analysis we need to in-
,V troduce some notation and review some terminology from the theory of

orthogonal functions. Let £2 be the space of all square integrable lebesque
measurable functions on [0, 1]. £2 is a Hilbert space with inner product,

< f'g >=J f(t)g(t)dt (2)

L)
and associated norm 1/2

Itff =( f(t)2 dt) (3)11 11/ (1

A vector valued function will be said to be in V if each coordinate is. Let
2vector to
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{?~()} 1 be an orthonormal basis for £2 Thni 2,wehv

f W) f?Vki(t) (4)

where the fi are the fourier coefficients of f with respect to the basis {'}
The series (4) converges in the norm (3). For a given orthonormal basis

{t~,let Tm .... ?,]T' and define the projection onto the span of

Let the coefficients of this projection be given by the operator

Cm (f)[=fV,..f]V

For a vec t or a = [a,,. . . , am], define

m

If f is ye -tor valued, then Cm(f) is a matrix whose ij-th entry is the j-th
fourier cc Afficient of the i-th element of f. Similarly, the a, in the definition
of C, can be vectors. Note that 'Pm(f) = Cm(f)'I'm. Finally, define the
m X m matrix Pm, by

C, (j 'm(s) ds) = Pm

Now we can consider the singular system (1). Fix m and take X-
Cin (z), U = Cm (u), Q = Cm (xo) where xo is considered a constant function.
Integrating (1) gives

Exr(t) - Exo = F]0 t x(s)ds - B]0 u (s) ds(5

Using the approximations x -- X'I', u - UTI, and zo = Q'%! in (5) gives

EX*I - EQ1I' FX f0TW(s)ds - BU POT(s) ds (6)

%. %***- ~V V.



where the m subscript has been dropped. Taking C, of both sides of (6)
and letting P = P yields the algebraic equation

EX - EQ = FXP- BUP (7)

In the method of orthogonal functions, (7) is solved for X given E, F, P, U, B.
The most discussed orthonormal basis to date have been the Walsh func-
tions [5], [9],[10],[13]. If m = 2j , however, the span of the first m Walsh
functions is identical to the linear span of the m block-pulse functions
{&,,...,} where 0(t) is i if <t < ;L and 0 otherwise. The set

{€}= is orthogonal and can be normalized by multiplying by Vm-. Let
= vm. Notice that the Oi are not an orthonormal basis for £2. Rather

for m = 2j , the {0,... , , } is an orthonormal basis for the span of the first
m Walsh functions. Thus we get approximations with the same error using
either set of m functions and the linear algebra problem (7) has the same
numerical conditioning in both cases. That (7) has a solution is shown in
[9]. We are interested in the accuracy of the approximation to the solution
x given by the solution X of (7).

Using the standard structure theory for matrix pencils [2],[8], we can
transform (1) by constant coordinate changes into

4, = Cz + Biu (8)
Nz' = Z2 + B 2 u (9)

where N is nilpotent of index k. That is, N: = 0, N"- ' # 0. Similarily, (7)
will decouple into two equations, one for the coefficients of z1 and one for the
coefficients of z2 . Let h = I/r. It is known that the Walsh functions will
give an 0(h) approximation for (8). We consider then only (9). Additional /

coordinate changes on (9) will put N into Jordan form and decouple (7)
so that the subsystems may be considered separately. Thus there is no
loss of generality in assuming that (1) is in the form of (9) where N is an
elementary Jordan block of index k. We now carefully consider the index
3 case.
Example 1. Consider (1) where0 11[ 00

E=N= 0 1 F=I= 0 1 0
0 0 0 0 0 1

4
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B= u 1 +o - ,u l4t -3t2-2e'

,P

11

This system has the solution

x, 1 [1 2t + Wt + 6et 1
z = X2 = 2t + 3t 2 + 4et - 5

X3 3t2 + 2e t - 4t 1

The resulting equation (7) was solved using the numerically robust Bartels-
Stewart algorithm [1],[6],[7]. Table 1 gives the £2 error, j1k -. Fm(X)II, for
several values of m.

m XI X2 X3

4 12.67 0.954 0.259
8 24.79 0.478 0.131

16 49.34 0.239 0.065
32 98.57 0.119 0.032 vb
64 197.09 0.059 0.016

Table 1. £2 error for Example 1

From this table we observe what appears to be O(h) convergence in z2 and
X3 and O(-) divergence in x, . The convergence in X2 was surprising. We
had expected the error in approximating x2 to be 0(l). To understand the
convergence for the x2 variable and to show that the observed behavior of
this example reflects the general case, we shall consider this example more
carefully. For the block pulse functions, ""

1 2 2 * 2 -''-,

0 1 2 *
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Substituting the values of E, F, , U, B, Q from Example 1 into (7) gives

[ 21 ... X2m 1 [11 £lm 1h
X3 1 .. 3M X 21 X2. £2m -0L .. 0 j [X31 X3n I2

= l ... Ulm I P i q21 ... q3,2(0

*l .. Ulm 0 0... 0]

From the third row of (10) we have

6.

But the exact solution is X3 =-u. Thus the algebraic variable X3 is ap-
proximated to the same accuracy as u was approximated which is O(h).
Now for X2 we have

(-"21 ... tX2m] = Ul Ilm

...1 7.....X3m] -[q3 ,... 7 q3m] (11)

The actual solution is X2 = X'- u -u - u. Thus

([X31..X3m,, - [q3l, .. . , q3m]( -i (12)

must be an approximation for xr'. To see why this is O(h) even though
the Euclidian operator norm of T-P- is 0(~1 ), let r be a function of t and
g(t) = rot r()ds. Let G = C., i y I? R C, (r) with respect to the block pulse
functions. Then

Cm~) ~ jt r(sjds C, P, rn()d8) + Cm (1'(1 - -P,)(r) ds)

Cm () C' (100.16



or
G =RP +E,

and finally
GP - ' = R + cP - '

The term c..,P-P is the error in using GP - ' as an estimate for R. In our
example we have that r = z 3, g = z3 -( X )a.. 

[q31 , ..-. ~ It is not clear that IIjT,(c,,P-')l is O(h). Suppose that
r has slowly varying slope. The interval [0, 1] can always be broken into
subintervals on which this is true. Then a straightforward, but tedious
calculation, shows that c, looks like h/'2M7r,, where ir,,, is a vector of
ones and M is independent of m and hence IFm(ir..)II = V-- = o(h-'I')
(Actually the entries of cm are between two vectors in this form.) But
,, = rP- is a vector of ones and minus ones. Thus

IlYm(EmP-')jI = IIjjF(h"5/MrmP-')jI = 2h3 TMII7m(b)jj = 2Mh

as was observed for X2. However, this error term gets multiplied again
by P-' in the computation of the estimate for x, and 6 - looks like
[1,3,5,...] which are the normalized block pulse coefficients of a function
of norm 0( 31 ). Thus for xi we have

I,,(,,,PP-)II = II,(2h312MbP-I)Il
2Mh 1/1!Fm/21)I71 12Mh11'n ,,(,J-')j = 2Mh'/2 0( ) = 0()

as observed.

3 Discussion

As noted earlier the example studied is typical of all systems of index k < 3.
Also, any system index higher then 3 must contain a subsystem of index 3
of the form of our example. Thus we can make the following conclusions
about the use of Walsh functions on singular systems.

1. The orthogonal function method using Walsh functions will give an
O(h) approximation for systems (1) of index zero or one.

7



2. The method will diverge for singular systems of index greater then
two.

3. For index two systems, we can expect 0(h) convergence. However,
this depends on algebraic cancellation and can be expected to be
numerically sensitive. Also, convergence can be reduced by controls
u with rapidly changing derivatives.

The difficulty in using Walsh functions arises because of the integral
approximation. If our orthogonal basis had the property thatti

(I'41m) (jt @,(s)ds) =0

then there would not be this difficulty. One example of such a basis is
{cos x, sin z, cos 2z, sin 2x, ... } on [-7r, 7r] and m an even integer. However,
in this case the coefficients are much more difficult to compute.

Even if (1) is a system on which the method of orthogonal functions
using Walsh functions may work, this method may not be the method of
choice unless there is some particlar need or reason for using Walsh func-
tions. Large values of m must be used to obtain even modest accuracy.
There are several alternatives that can provide higher accuracy at substan-
tially less cost. Among these are computation of part of the matrix pencil
[15],[7], backward differentiation formulas [14], and implicit Runge Kuttas
[12].
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